Armageddon Online

Armageddon Online | Super Volcano, Nuclear Warfare, Mega Tsunami, Asteroid Impact, World War III, End of the World
Extreme Food Storage
Find Local Gun Shops
Homespun Environmental
Just Live Off Grid
Lugol's Iodine Free S&H
Prep and Pantry
PRI Fuel Storage Products
Shooting Ranges
Solo Stove
The Daily Blender
Head Massager
Your Link Here!
Natural Disasters
Man Made Disasters
Space Disasters
Conspiracy Theories
Disaster Prophecy
General Doomsday
Paranormal Disasters
Submit an Article
Links / Resources
Link to us!
Support the Site!
Armageddon Online

37 Critical Itemsarmageddon
Backyard Libertyarmageddon
Emergency Water Kitarmageddon
Survival Kitsarmageddon
Just Live Off Gridarmageddon
Extreme Food Storagearmageddon
Solo Stovearmageddon
Prep and Pantryarmageddon
Preparedness Guruarmageddon
Shepherd Survivalarmageddon
Prepare Yourselfarmageddon


Man Made Disasters
 Biological Warfare
 Chemical Warfare
 Cybernetic Revolt
 Doomsday device
 Mutually Assured  Destruction
 Nuclear holocaust
 Nuclear Weapons
 Suitcase Bombs 
 The Doomsday Clock
 Tsar Bomba
 World War 3
 World War 4

Conspiracy Theories
 911 Currency
 Area 51 & Roswell
 Conspiracy Theories  List
 Fake Terrorism
 The Illuminati
 Pearl Harbor

General Doomsday
 Countdown to  Doomsday
 Doomsday event 
 Extinction Event - ELE
 Human Extinction
 Hypothetical Disasters
 Mega Disasters
 Risks to Humans
 The End of Civilization 
 Wrong about the End of  the World

Space Disasters
 99942 Apophis  Asteroid 
 Asteroid 2007 WD5
 Asteroid Impacts
 Black holes
 Eta Carinae
 Impact Event
 Galaxy Collision
 Near Earth Object
 Near Earth Supernova
 The End of Planet Earth 
 The Tunguska Event

Paranormal Disasters
 Alien Invasion of Earth
 Alien Occupation
 Electronic Voice  Phenomenon
Natural Disasters
 1931 Flood
 Epidemics & Plagues 
 Extinction Event - ELE
 Flooding Disasters 
 Global Ice Age 
 Ice Age 
 Lake Toba Super  Volcano
 List of Famines 
 Mega Tsunami
 Megathrust Earthquake 
 Natural Disasters List
 Shaanxi earthquake
 Super Volcano  Yellowstone
 Super Volcano  Compilation
 The "Big" Disaster List
 The Worst Natural  Disasters
 The Yellowstone  Caldera 
 Tornadoes and Twisters
 Tropical Storms
 Water Crisis
 What is a virus?
 Worst Disasters
 Yellowstone's Super  Sisters

Disaster Prophecy
 2012 Doomsday  Prophecy
 2012 & Mayans
 Biblical Prophecy
 Isaac Newton 2060
 Nostradamus  Predictions
 The Apocalypse 
 The Bible Code
 The Mayan Calendar
 Web Bot Predictions
 Whoops! Failed  Armageddon

9/11 : Inside Job? - 9/11 : Are We Victims of a Hoax?  -  Bankers Gone Wild - Mortage-Backed Securities Fraud - Slave to the Bankers - 11th Marble - Obama The Love Child - Government Lies - Operation Northwoods - 1984 and the War on Terror - Tell the Truth - Survive a Hurricane - Survive a Tornado - Patriot Rising

Tropical Storm / Cyclone

Armageddon Online Forums
*Advertise Here!*


What is a Tropical Storm or Tropical Cyclone?

In meteorology, a tropical cyclone (or tropical storm, typhoon or hurricane, depending on strength and location) is a type of low-pressure system which generally forms in the tropics. While some, particularly those that make landfall in populated areas, are regarded as highly destructive, tropical cyclones are an important part of the atmospheric circulation system, which moves heat from the equatorial region toward the higher latitudes.

A heat engine

Structurally, a tropical cyclone is a large, rotating area of clouds, wind, and thunderstorm activity. The primary energy source of a tropical cyclone is the release of heat of condensation from water vapor condensing at high altitudes. Because of this, a tropical cyclone can be thought of as a giant vertical heat engine.

The ingredients for a tropical cyclone include a pre-existing weather disturbance, warm tropical oceans, moisture, and relatively light winds aloft. If the right conditions persist long enough, they can combine to produce the violent winds, incredible waves, torrential rains, and floods associated with this phenomenon.

This use of condensation as a driving force is the primary difference setting tropical cyclones apart from other meteorological phenomena, such as mid-latitude cyclones, which draw energy mostly from pre-existing temperature gradients in the atmosphere. To drive its heat engine, a tropical cyclone must stay over warm water, which provides the atmospheric moisture needed. The evaporation of this moisture is driven by the high winds and reduced atmospheric pressure present in the storm, resulting in a sustaining cycle.

Classification and terminology

Tropical cyclones are classified into three main groups: tropical depressions, tropical storms, and a third group whose name depends on the region.

A tropical depression is an organized system of clouds and thunderstorms with a defined surface circulation and maximum sustained winds of less than 17 metres per second (33 knots, 38 mph, or 62 km/h). It has no eye, and does not typically have the spiral shape of more powerful storms.

A tropical storm is an organized system of strong thunderstorms with a defined surface circulation and maximum sustained winds between 17 and 33 meters per second (34 to 63 knots, 39 to 73 mph, or 62 to 117 km/h). At this point, the distinctive cyclonic shape starts to develop, though an eye is usually not present.

The term used to describe tropical cyclones with maximum sustained winds exceeding 33 meters per second (63 knots, 73 mph, or 117 km/h) varies depending on region of origin, as follows:
  • hurricane in the North Atlantic Ocean, North Pacific Ocean east of the dateline, and the South Pacific Ocean east of 160°E
    typhoon in the Northwest Pacific Ocean west of the dateline
  • severe tropical cyclone in the Southwest Pacific Ocean west of 160°E or Southeast Indian Ocean east of 90°E
  • severe cyclonic storm in the North Indian Ocean
  • tropical cyclone in the Southwest Indian Ocean
This is the intensity at which tropical cyclones tend to develop an eye, which is an area of relative calm surrounded by the strongest winds of the storm, in the eyewall. The strongest of these storms have had maximum sustained windspeeds recorded at 85 meters per second (165 knot, 190 mph, 305 km/h).

In other places in the world, hurricanes have been called Bagyo in the Philippines, Chubasco in Mexico, and Taino in Haiti.

Hurricanes are categorized on a 1-to-5 scale according to the strength of their winds, using the Saffir-Simpson Hurricane Scale. A Category 1 storm has the lowest wind speeds, while a Category 5 hurricane has the strongest. These are relative terms, because lower category storms can sometimes inflict greater damage than higher category storms, depending on where they strike and the particular hazards they bring. In fact, tropical storms can also produce significant damage and loss of life, mainly due to flooding.

The U.S. National Hurricane Center classifies hurricanes of Category 3 or above as Major Hurricanes. The Joint Typhoon Warning Center classifies typhoons with wind speeds of at least 150 mi/h (67 m/s or 241 km/h; a strong Category 4 storm) as Super Typhoons.

The definition of sustained winds recommended by the World Meteorological Organization (WMO) is that of a ten-minute average, and that definition is adopted by most countries. However, a few countries use different definitions: the United States, for example, defines sustained winds based on a 1-minute average wind measured at about 10 meters (33 ft) above the surface.

An extratropical cyclone is a storm that was once tropical in nature. However, once it passed over land or cool waters, its energy source changed from released heat from condensing water to the difference in temperature between air masses. From space, these storms resemble a comma. Extratropical cyclones still can be dangerous because their continuing low pressure causes powerful winds.

In the United Kingdom and Europe, some severe northeast Atlantic cyclonic depressions are referred to as "hurricanes," even though they rarely originate in the tropics. These European windstorms can generate hurricane-force windspeeds but are not given individual names. In British shipping forecasts, winds of force 12 on the Beaufort scale are described as "hurricane force".

There is also a polar counterpart to the tropical cyclone, called an arctic cyclone.


Hurricane Anita approaching landfall on the coast of Mexico in September 1977.

Nearly all tropical cyclones form within 30 degrees of the equator and 87% form within 20 degrees of it. Since the Coriolis effect initiates and maintains tropical cyclone rotation, such cyclones almost never form or move within about 10 degrees of the equator [1] (where the Coriolis effect is weakest). However, it is possible for tropical cyclones to form within this boundary if another source of initial rotation is provided. These conditions are extremely rare and such storms are believed to form at a rate of less than one a century.

Most tropical cyclones form in a worldwide band of thunderstorm activity known as the Intertropical convergence zone (ITCZ).

Worldwide, an average of 80 tropical cyclones form each year.

Major basins

There are seven main basins of tropical cyclone formation:
  • Western North Pacific Ocean: Tropical storm activity in this region frequently affects China, Japan, the Philippines, and Taiwan. This is by far the most active basin, accounting for one third of all tropical cyclone activity in the world. National meteorology organizations, as well as the Joint Typhoon Warning Center (JTWC) are responsible for issuing forecasts and warnings in this basin.
  • Eastern North Pacific Ocean: This is the second most active basin in the world, and is also the most dense (a large number of storms for a small area of ocean). Storms which form in this basin can affect western Mexico, Hawaii and on extremely rare occasions, California. The Central Pacific Hurricane Center is responsible for forecasting the western part of this area, and the National Hurricane Center for the eastern part.
  • South Western Pacific Ocean: Tropical activity in this region largely affects Australia and Oceania, and is forecast by Australia and New Guinea.
  • Northern Indian Ocean: This basin is actually divided into two areas, the Bay of Bengal and the Arabian Sea, with the Bay of Bengal dominating (5 to 6 times more activity). Hurricanes which form in this basin have historically cost the most lives — most notably, the Bhola Cyclone of 1970 killed 200,000. Nations affected by this basin include India, Bangladesh, Sri Lanka, Thailand, Burma, and Pakistan, and all of these countries issue region forecasts and warnings. Rarely, a tropical cyclone formed in this basin will affect the Arabian Peninsula.
  • Southeastern Indian Ocean: Tropical activity in this region affects Australia and Indonesia, and is forecast by those nations.
  • Southwestern Indian Ocean: This basin is the least understood, due to a lack of historical data. Cyclones forming here impact Madagascar, Mozambique, Mauritius, and Kenya, and these nations issue forecasts and warnings for the basin.
  • North Atlantic Basin: The most well studied of all tropical basins, the North Atlantic includes the Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico. Tropical cyclone formation here varies widely year to year, ranging from over twenty to just one. The average is ten. The United States, Mexico, Central America, the Caribbean Islands and Canada are affected by storms in this basin. Forecasts for all storms are issued by the National Hurricane Center based in Miami, Florida; the Canadian Hurricane Centre, based in Halifax, Nova Scotia, also issues forecasts and warnings for storms expected to affect Canadian territory and waters. Hurricanes that strike Mexico, Central America, and Caribbean island nations, often do intense damage: they are deadlier when over warmer water, and the United States is better able to evacuate people from threatened areas than many other nations. Many of the more intense Atlantic storms are Cape Verde-type hurricanes, forming just west of Africa near the Cape Verde islands.

Unusual formation areas

The following areas spawn tropical cyclones only very rarely.
  • Southern Atlantic Ocean: A combination of cooler waters, the lack of an Inter-tropical Convergence Zone, and wind shear makes it very difficult for the Southern Atlantic to support tropical activity. However, three tropical cyclones have been observed here — a weak tropical storm in 1991 off the coast of Africa, Cyclone Catarina (sometimes also referred to as Aldonça), which made landfall in Brazil in 2004, and a smaller storm in January of 2004, east of Salvador, Brazil. The January storm is thought to have reached tropical storm intensity based on scatterometre winds.
  • Central North Pacific: Shear in this area of the Pacific Ocean severely limits tropical development. However, this region is commonly frequented by tropical cyclones that form in the much more favorable Eastern North Pacific Basin.
  • Mediterranean Sea: Storms which appear similar to tropical cyclones in structure sometimes occur in the Mediterranean basin. Such cyclones formed in September 1947, September 1969, January 1982, September 1983, and January 1995. There is debate on whether these storms were tropical in nature.


Worldwide, tropical cyclone activity peaks in late summer when water temperatures are warmest. However, each particular basin has its own seasonal patterns.

In the north Atlantic, a distinct hurricane season occurs from June 1 to November 30, sharply peaking in early September. The northeast Pacific has a broader period of activity, but in a similar timeframe to the Atlantic. The northwest Pacific sees tropical cyclones year-round, with a minimum in February and a peak in early September. In the north Indian basin, storms are most common from April to December, with peaks in May and November.

In the southern hemisphere, tropical cyclone activity begins in late October, and ends in May. Southern hemisphere activity peaks in mid-February to early March.

Continue to page 2 - = >

Armageddon Online

 Featured Articles
yellowstone super volcano
Yellowstone National Park is a Super Volcano - an eruption could destroy America
asteroid impact extinction
Hundreds of asteroids capable of destroying life pass close to Earth
mega tsunami giant tidal wave
A mega tsunami (a tidal wave thousands of feet high) will one day hit New York
nuclear weapons explosion
30,000 nuclear warheads could be fired at America in a Nuclear War.

All Pages Copyright ©  Armageddon Online